
Theoret. chim. Acta (Berl.) 31, 289-295 (1973) 
�9 by Springer-Verlag 1973 

On Bridging the Gap between the INDO 
and the NDDO Schemes 

Bjorn Voigt 
Department of Physical Chemistry, H. C. Orsted Institute, University of Copenhagen, 

DK-2100 Copenhagen O, Denmark 

Received March 20, 1973/June 4, 1973 

A series of approximate LCAO SCF methods intermediate between the INDO and the NDDO 
schemes is proposed. The suggestion is based upon the decomposition of integrals in multipole-multi- 
pole type interactions. 

Key words: Approximate LCAO-SCF - Multipole-multipole interactions - INDO - DRINDO - 
NDDO 

1. Introduction 

In recent years considerable efforts have been dedicated to studies of the 
CNDO (Complete Neglect of Differential Overlap) and the INDO (Intermediate 
NDO) approximate LCAO-SCF schemes [1-4 I. On the other hand, only a few 
calculations have been performed using the less approximate NDDO (Neglect of 
Diatomic DO) scheme [ 1, 4]. Apparently the complications of the latter are judged 
to be disproportionately large compared with the gain expected in the reliability 
of the calculation. Most of the many additional integrals to be computed are un- 
important, and they do not appear to be readily accessible to parameterization. 

Of the few attempts made so far in bridging the gap between the INDO and 
the NDDO approximation schemes most have been plagued by the inadequacy 
of their not being invariant to the choice of local coordinate systems. The PNDO 
(Partial NDO) method [5] offers an example of this [4]. 

In the present paper a number of approximation schemes, all of which lie be- 
tween the INDO and NDDO levels of approximation and all of which possess 
the desired invariance properties, is presented. 

2. Proposals 

The basis of the schemes to be proposed is the multipole expansion of the po- 
tentials from one-center charge distributions. To remove two-center charge distri- 
butions, the NDDO approximation is initially invoked. The remaining two-elec- 
tron integrals are either integrals involving orbitals from only a single atom, or 
integrals which may be interpreted as representing the electrostatic interaction 
energy of two reasonably well separated one-center charge distributions (CA and 
~B). The former integrals are all retained, as in the INDO method, while for the 
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latter the following expression is obtained when the usual expansion of lira2 
[6a] (around center A, say) is employed: 

I(ea,  L%) = j" ~ eA(rO~.(v2)/r12 dVl dl)2 
+l 

,=o" r)f 4r~ rT> +i- avl[ av2" 3 ~0B( 2 / 2 ~ - , [  r/< ~OA(I~I) m= ~'-, Y~*(0t,cpt) Yzm(02'q~2) " ] "  

(1) 

For non-overlapping charge distributions (r< = r~ and r> = r 2 )  , the expression in 
parentheses is the/th term in the classical multipole expansion of the potential 
from ~A [6b]. The fact that charge distributions do overlap in molecular inte- 
grals will not affect the argument given below. 

When approximations are introduced into (1) the problem of coordinate in- 
variance arises. The value of the integral should not depend upon the position of 
the origin and upon the orientation of the coordinate system chosen to describe 
the charge distributions and 1/r12. Since the integral is calculated exactly in the 
NDDO scheme, all coordinate systems will yield identical results in that case. 
For the INDO or the CNDO method, on the other hand, only the spherical term 
(the l=  0, or the monopole term) is retained. The integral is assigned a non-zero 
value only if the spherical average of QA (and of ~B) around the chosen origin 
differs from zero [7]. This truncation of the multipole expansion destroys the 
origin invariance. (This may easily be seen by considering the interaction of two 
point charges.) However, the problem is not serious when two atomic charge 
distributions are involved. In this case the natural choice for an origin is at either 
of the nuclear positions. It follows that computations with these two origins 
should yield the same result, and this implies in general, except for cases where 
the two charge distributions are identical and symmetrically arranged, that the 
integral must be calculated from the spherical averages of the two charge distribu- 
tions around the respective centers. The orientation of the coordinate system 
employed in such a calculation is obviously immaterial; a spherical object looks 
the same in any direction from the center. 

The approximations involved in the INDO method may be considered as an 
operator approximation for 1/Q2 suitably corrected to fullfill invariance require- 
ments. However, one may adopt another point of view by expanding each of the 
charge distributions in spherical harmonics around the respective centers: 

l=0 m = - l  l=0 

and similarly for QR. Inserting these expansions into (1) one obtains 

I(QA,QR) = ~ .( ~ Q~)(rl)~)(r2)/r~2dvt dr2 - ~ Ikz (3) 
k,l k,l 

with 

,,(k)(, ~j 4~ +z r~>+ ~ dvl}dv 2 . (4) lkz = ~ a  V2,121+ 1 ~/<~)(r l )  m=Z-~ Yz*(0t,~0t) Yu"(0z'q~ 

The two-center interactions retained in the INDO scheme, Ioo, may be cha- 
racterized as monopole-monopole types. However, the expansion of integrals in 
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multipole-multipole type interactions may be continued to any order without 
loss of coordinate invariance. This follows directly from the addition theorem 
for spherical harmonics [6 a] : 

+l 

pz(coscO _ 4re ~ Yl~(Ol,qll) Ylm(O2,(P2). (5) 
2 l+1  m=-z 

The angle c~ between the radius vectors of the two points does not depend upon 
the coordinate system as long as the origin is fixed. Thus by inserting (5) into (4) 
all explicit reference to the coordinate system is removed. Each term in the double 
sum in (3) is therefore coordinate system invariant and the summation itself may 
be truncated in any manner. Of course, in molecular calculations the truncation 
must be symmetric in the sense that inclusion oflk~ implies that Izk also be included. 
Thus the interactions retained are classified according to the multipole-multipole 
type. 

The above analysis leads to the following proposal for the assignment of values 
to two-center integrals: 

Firstly, the total charge of each of the charge distributions is calculated. The 
corresponding monopole-monopole type interaction energy, defined in such a 
way that it depends only upon the nature of the two atoms, is then computed. In 
addition, an analysis is made of whether or not the charge distributions have any 
multipole moments relative to their respective centers. For any that have the 
corresponding multipole-multipole (i. e. monopole-dipole, dipole-dipole, mono- 
pole-quadrupole, etc.) interaction energies of given types are added. These should, 
of course, depend upon the relative orientation of the multipoles, but otherwise 
only upon the atoms involved and the distance between them. 

Such a procedure will be coordinate invariant. It may be shown to be invariant 
under hybridization transformations as well [3]. 

When the detailed form of the atomic charge distributions is taken into account 
it can be seen that for a finite basis set the expansion in (2) must terminate at some 
finite 1. For a basis set containing s- and p-orbitals only, the highest non-vanish- 
ing term that may occur in (2) is the quadrupole term (l = 2). This is easily seen 
using the coupling rule for spherical harmonics [8]. Thus a calculation retaining 
interactions up to and including the quadrupole-quadrupole type in this case 
would be equivalent to the N D D O  scheme. As a consequence, the decomposition 
of integrals into multipole-multipole interactions will give rise to only a finite 
number of approximation schemes that are intermediate between the INDO and 
the NDDO schemes. 

3. The DRINDO Scheme 

In the simplest of the approximate LCAO-SCF schemes proposed above 
monopole-dipole interactions are included in addition to the monopole-mono- 
pole terms. This scheme may be given the name DRINDO (Dipoles Retained 
INDO). The field which is made self-consistent in the DRINDO scheme is con- 
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structed taking into account the main effects of the polarization of atoms in molec- 
ular environments. 

In the following a basis set of unhybridized atomic orbitals (AO's) consisting 
only of s- and p-orbitals is assumed. The symbols v and 2 denote general AO's, 
while s, a and i (or j) denote specific AO's. For  atom A, s a is the s-orbital, aAS is 
the p-orbital pointing towards atom B, and iA, i = X, y, z, are the p-orbitals directed 
along the axis of the local coordinate system on A. 

With this basis set, the two-electron, two-center integrals which, according to 
the D R I N D O  procedure, should be retained are: 

[-YA VAI2B 2B] = TAB 

[SA iAIJ'B 2B] = ~BA(eAi.eAB) (6) 

eAi and eAB are unit vectors directed along the/-axis on A and from A towards B 
respectively�9 If it is assumed that the s- and p-orbitals have the same radial depend- 
ence the expression for r is: 

~B : [SA O.ABISBSB] " 

As noted by Dixon [9], it would be inconsistent to include the integrals (6) 
while neglecting the monopole-dipole interactions with the atomic cores. Thus 
the integrals 

<SAI VBIiA> = daA(eAi "CAB ) 

where V B is the attractive core potential from atom B, must also be included, d] 
being given by 

d s = <SAI VBIaAB> �9 

The matrix elements of the Fock operator in the D R I N D O  approximation 
are now readily constructed. Using superscripts to indicate the centers of the orbi- 
tals the following expressions are obtained for the one-center elements: 

--~vFAA--FINDO----~ + ~ 2 ~  eag" Psj eB , 
B~A 

AA _ FI.NDO 
es i  - - 5 ,  +eAi"  Z 

BCA 

Here F~DO is the corresponding matrix element in the INDO approximation, ~vA 
P ~  denotes an element of the charge and bond order matrix, while the gross 
electronic population PBB on atom B is defined as: 

PBB = Z PzS~ " 
2 

The two-center matrix elements are given in a similar notation by: 

r, AB __ r~INDO 1--r AB �9 Pi~ eAi) Ess  - -  Fss  - -  2OAI, C~AB E 
i 

1 A --  (eBA" AB P~j eB3) 
J 
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FsAB F1ND O 1 B = " ~ ,P i~  eAi) * s j  - -  2 b A ( e A  B AB 

i 

_1 A AB 
- 2 f i b  Ps~ (eBA eBj) 

AB F!ND 0 _ 1 _  B AB . 
Fi# = _~j 2 ~A Psj  (eAB eAi) 

1 A A B  
- 2 6B Pis (eBA'esj) �9 

The above expressions do not describe the manner in which the result of corre- 
sponding INDO and DR1NDO calculations differ. However, an investigation of 
how two atoms, one of which is a hydrogen atom, interact in the two schemes does 
yield informations on this point. It is well-known that the total energy expression 
in the INDO approximation can be partitioned into monatomic and diatomic con- 
tributions [3]. This is retained in the DRINDO scheme. Since the additional inte- 
grals included in the DRINDO approximation all involve two centers, it follows 
that the monatomic terms are unchanged. If h denotes the hydrogen Is-orbital, 
the difference between the diatomic contributions from the atom pair A and H is: 

{ e2 } 
FDRINDO - -  g ~  D O  ~-" 2 P  AA P u n [ h h l s a ]  -- <sl--la> -- PAHpAhn[hhlsa]  . (7) 
~AH . rH 

The charge distributions (hh) and 2 p A A ( s a )  can, for the present discussion, be 
regarded as a point charge and a point dipole respectively. Thus the first term on 
the right-hand side describes the electrostatic interaction between the net charge 
on the hydrogen atom and the effective dipole on A. 

The last term in (7) is a bond term of second order. This term will be important 
only if the two atoms are bound together. In a localized description where both 
bond orders involved may be derived from a single molecular orbital describing 
the bond we have: 

p A H D A H  - -  P D b~ 
sh - - a h  - -  ~ H H ' t s a  �9 (8)  

The bond term thus removes from the electrostatic term half of the interaction be- 
tween the electronic charge on hydrogen and that part of the dipole on A which 
is due to the two bonding electrons. The electron does not interact with that por- 
tion of the dipole which it has produced itself. 

For atoms far apart, the difference (7) is dominated by the pure electrostatic 
interaction. For atoms bound together, however, the situation is reversed. In this 
case the bond term which involves the gross electronic population rather than the 
net charge will usually play the major role. This term describes an attraction be- 
tween the two atoms which, according to (8), increases with increasing sp-mixing 
in the bonding hybrid. 

The above analysis indicates that the results of a DRINDO calculation will 
deviate from those from the corresponding INDO calculation by having: 

1. Enhanced hybridization and thus increased polarization of atoms. 
2. Smaller computed bond distances, in particular for short bonds (AH-bonds) 

where monopole-dipole interactions are largest. 
3. Larger electron density on atoms bound to polarized (highly electronegative) 

atoms such as nitrogen, oxygen and fluorine. This will lower the electrostatic 
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repulsion between the atoms by roughly twice the amount with which the bond 
attraction is decreased. 

The quantities 6~ and d~ which constitute the difference between the DRINDO 
and the INDO schemes may be treated in various ways. They are easily calculated 
theoretically [10], but they may also be parameterized semiempiricaUy. For ex- 
ample, corresponding to the Ohno-Klopman expression [11, 12]: 

~AB = e2 [R~B + (0A + 0B) 2"] -~- 

one may use 

a~ = e2 { [(RAB -- AA)2 --[- (~)A ~t_ 0B) 2] -�89 _ [(RA B + AA)2 + (~A -{- 0B) 2] -�89 

This expression behaves correctly in the limits RAB-~Oe and RAB-->0. A A is an 
atomic parameter which may be either treated as such or calculated theoretically 
from 

AA---- �89 

4. Concluding Remarks 

The approach employed in the present work differs somewhat from that follow- 
ed by Pople and co-workers. These latter authors were concerned about the form 
of the individual charge distributions in the integral (1). Here, on the other hand, 
attention has been focussed on the types of interactions between the charge distri- 
butions. The emphasis has thus been shifted from attempts to approximate charge 
distributions to attempts to approximate integrals. 

The second member of the series of approximations proposed above is the 
scheme in which dipole-dipole and monopole-quadrupole type interactions are 
included. These both decrease asymptotically proportionally to the inverse third 
power of the distance. Of the additional terms included the dipole-dipole type will 
probably be the most important, since no cancellation between electron-electron 
and electron-core interactions takes place in this case. 

When quadrupoles are introduced the inconvenience that charge distributions 
(even from an unhybridized basis set) may possess both a monopole and a quadru- 
pole arises. Invariance with respect to rotation of local coordinate systems requires 
that all quadrupoles be retained. On the other hand, the inclusion of monopole- 
quadrupole terms leads to a difference between the direct interactions of s- and p- 
electrons with the surroundings. This difference has been asserted to be important 
by several authors [5, 13]. Rather complex local transformations of d-type func- 
tions have to be performed in this case. However, problems of this kind do not 
constitute major obstacles to the applicability of the approximation scheme, and 
it appears that the multipole-multipole decomposition of integrals is a convenient 
way of approaching the NDDO level of approximation in a manner which, by its 
very nature, suggests a detailed semiempirical parameterization scheme. 
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